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Abstract
There are many minerals whose structure is well described as a framework
of linked SiO4 tetrahedra. Since the energy cost of stretching the Si–O bond
is much greater than the cost of changing the bridging Si–O–Si bond angle,
these structures may to a first approximation be analysed using the rigid-unit
picture, in which the polyhedra are treated as completely rigid. In order to
compare the predictions of rigid-unit theory with the results of other forms
of simulation, we wish to determine how well a given set of atomic motions
can be described in terms of rigid-unit motion. We present a set of techniques
for finding the polyhedral rotations that most closely fit a given set of atomic
motions, and for quantifying the residual distortion of the polyhedra. The
formalism of geometric (Clifford) algebra proved very convenient for handling
arbitrary rotations, and we use this formalism in our rotor-fitting analysis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many materials have crystal structures that can be described as frameworks of linked polyhedral
groups of atoms. Examples include the perovskites such as SrTiO3, which contains corner-
linked TiO6 octahedra, zeolites and other silicates with networks of corner-linked SiO4 and
AlO4 tetrahedra, and ceramics with negative thermal expansion such as ZrW2O8, which
contains corner-linked ZrO6 octahedra and WO4 tetrahedra. These materials have a wide
range of properties, such as the existence of phase transitions [1] and anomalous thermal
expansion [2, 3], that can be explained by models in which the polyhedra are effectively rigid
and in which the framework is allowed to flex without high cost in energy. This approach has
been quantified by the ‘rigid-unit-mode’ (RUM) model, in which the flexibility of the network
is interpreted in terms of low-energy phonons in which the polyhedra move as rigid units [1,4].
These phonons are what have been called RUMs. Using methods reviewed below, it has been
possible to show that most framework materials do not have large numbers of RUMs. However,
since RUMs have very low frequencies their amplitudes can be large and so the RUMs that do
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Figure 1. The octahedral rotation mode in the perovskite structure is an example of a RUM.

exist play a significant part in phenomena such as displacive phase transitions, zeolite catalysis,
and negative thermal expansion.

The RUM model has been formulated in terms of phonons and the distribution of RUM
phonons in reciprocal space [1,4]. Some progress towards developing the model in the variables
of real space has been made by projecting a set of RUM eigenvectors onto a supercell structure
in order to quantify the localized flexibility of zeolite networks. In this paper we develop
the mathematical tools to facilitate the analysis of RUM deformations in real-space atomic
configurations. These are based on the technique of ‘geometric algebra’ (GA) [6]. We
illustrate the tools using two example studies. The first is the analysis of large configurations of
disordered crystalline phases of the silica polymorphs in order to obtain a quantitative measure
of the contribution of the RUMs to the overall atomic motions. The second is an analysis of
local deformation of framework structures due to an atomic substitution on a tetrahedral site.

2. Rigid-unit-mode model

2.1. Rigid-unit modes

We noted above that the RUMs are phonon modes in which the polyhedral groups of atoms
move as rigid units. In the simplest visualization of these motions, we can treat the polyhedra
as rigid units with a nominal high value of a single coefficient of stiffness for deformation, and
with no other force constants in the system. The RUMs will therefore be the phonons with
zero frequency. Other phonons will have values of their frequencies that are determined by the
extent to which the polyhedra are distorted. The simplest example of a RUM is the octahedral
rotation mode in the perovskite structure, as shown in figure 1. In practice there is a wide
range of force constants for interactions between polyhedra, as well as a more complicated set
of interactions that describe the deformations of the polyhedra. Nevertheless, this latter set
of force constants will have values that are higher than other force constants in the materials,
and the RUMs will have low frequencies. Typically it is found that the RUM frequencies lie
between 0 and 1 THz [5]. In materials that undergo displacive phase transitions, more RUMs
are found in the higher-symmetry high-temperature phases [1]. In many cases, these phases
appear to contain considerable orientational disorder of the polyhedra. The structures of these
phases can be interpreted in terms of the dynamic superposition of RUMs across a wide range
of wavevectors [7]. In many cases, the soft modes for displacive phase transitions have been
identified as RUMs [1]. The case of quartz is one in which this has been documented in some
detail [1, 8].

The theoretical task is to identify the set of phonon modes that are RUMs. This task
involves identifying both the wavevectors of the RUMs and the RUM eigenvectors. We use a
molecular dynamics approach within the ‘split-atom’ approximation, as described below [4,9].
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For many framework structures we typically find that the RUMs lie on surfaces of wavevectors
in reciprocal space. Often these are flat surfaces that lie on special planes, including planes that
pass through k = 0, 0, 0, and planes that lie on the surfaces of the Brillouin zone. However, we
have also found that for some materials the RUMs lie on exotic curved surfaces in reciprocal
space; the reason for this is not known [5]. We have also identified the existence of RUMs in
silica and silicate glasses, for which the reciprocal-space analysis is of less relevance [10,11].

2.2. Split-atom approach

The split-atom method [4] provides a simple representation of a framework structure that
facilitates the use of standard molecular lattice dynamics methods for the analysis of potential
RUM distortions. The idea is to replace atoms shared between two polyhedra by two atoms,
each assigned to one of the two linked polyhedra. These two atoms are the split atoms. The
equilibrium separation of the two split atoms is zero, and this is maintained by a fictitious spring
of zero equilibrium length operating between the two split atoms. The array of polyhedra with
split atoms on the vertices can be relatively easily analysed using molecular lattice dynamics,
in which each polyhedron is treated as a perfectly rigid object with six degrees of freedom.
The only force constant in the calculation is the stiffness of the spring between two split atoms.
In fact this spring represents to first order the forces associated with the distortions of the
polyhedra, and the spring force constant can be tuned so that the spread of phonon frequencies
matches the experimental spread (since the highest phonon frequencies are those associated
with modes of deformation of the polyhedra). The dynamical matrix for this system can be
set up using standard methods.

The molecular lattice dynamics calculation can be performed for any chosen wavevector.
For each wavevector, any RUM will be calculated to have zero frequency. The atomic motions
associated with any RUM can be obtained from the corresponding mode eigenvector.

2.3. Atomistic simulations

There are a wide variety of simulation tools that can be used to provide configurations of
displaced atoms under various different conditions which can then be analysed in terms of
RUM deformations. In this paper we study two different types of atomic configuration,
which we generate using two specific techniques. The first is the reverse Monte Carlo
(RMC) method [12, 13]. This involves generating configurations of atoms that give best
agreement with experimental data, which in our case are data from neutron total-scattering
experiments. Similar configurations can also be obtained from molecular dynamics or Monte
Carlo simulations with interatomic potentials, but for our purposes the use of the RMC method
ensures that we have configurations that are truly consistent with experimental data and are
not influenced by the details of model interatomic potentials. The methodology is described
in more detail elsewhere [12–14]. For the present work, we use a series of configurations of
quartz over a wide range of temperatures encompassing the α–β phase transition [15], and use
the GA tools to analyse how fluctuations in the structure can be described quantitatively in
terms of rigid-body rotations of the SiO4 tetrahedra and small deformations of the tetrahedra.

The second type of atomic configuration that we study in this paper is concerned with the
relaxation of framework crystal structures around defect sites. The structures of many silicates
consist of networks of linked SiO4 and AlO4 tetrahedra, and frequently it is found that the Al
and Si cations are disordered across the different tetrahedral sites. A lot of research has been
concerned with understanding the ordering interactions, which are primarily determined by the
strains associated with the differences in sizes of the Si and Al cations [16,17]. An interesting
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issue is how the strain can be propagated across the tetrahedral framework because it is possible,
in principle, for the strain to be screened by rotations of the tetrahedra. In this paper we use
a single demonstration calculation to show the potential of the GA approach for addressing
this issue. In this case, we generate the atomic configuration using the Mott–Littleton method.
We start with a purely siliceous framework and incorporate a single Al cation within one of
the tetrahedral sites as a charged defect. For this work we use the interatomic shell-model
potentials described by Winkler et al [18]. The Mott–Littleton calculations were performed
within the GULP lattice energy program [19].

2.4. Bridging the gap

The RUM and the split-atom approach allow us to identify RUMs according to their wavevector.
However, this approach does not give us the actual atomic positions and bond lengths.
Atomistic simulations, on the other hand, provide information on atomic positions and bond
lengths but have no connection to the RUM. It would obviously be useful to bridge this gap
and quantify how closely the rigid-unit approach matches actual atomic motions.

In this paper we present a set of equations for determining how closely a given set of
atomic motions can be matched using rigid-unit motions only, and for quantifying the residual
distortion of the polyhedra. This allows us to determine for the first time what proportion of
the atomic motions in a framework structure can be accounted for by rigid-unit motion.

3. Mathematical approach

We have used the language of GA, as it gives a very convenient form for handling general
rotations. There is no need to go into great depth on the subject of GA here, so we shall simply
present the axioms and some examples in the appendix. More information on GA can be found
in the literature [6, 20, 23] and online [24].

3.1. Equations of a general rotation

Our equations are written here in terms of a three-dimensional set of orthonormal basis vectors
ei , where e1 is the unit vector in the x̂ direction and so on. The rotor operator R, which rotates
a vector by the operation x → x ′ = RxR̃, is defined in the appendix. R is usually written in
either an exponential form: R = e−B̂φ/2, or a trigonometric form: R = cos(φ/2)−B̂ sin(φ/2).
In this form B̂ is a unit bivector describing the plane of the rotation.

In this work we have found it convenient to use instead the following algebraic form:

R = X − 1
2 (Bxe2e3 + Bye3e1 + Bze1e2) = X − B/2. (1)

In this form the Bnej ek terms form a bivector B, defining the plane of the rotation.
Comparison with the trigonometric form gives the modulus of B as

|B| =
√
(B2
x + B2

y + B2
z ) = 2 sin

(
φ

2

)
, (2)

so that for small angles |B| � φ.
The term X is equal to cos(φ/2) and is given by

X =
√
(1 − 1

4 (B
2
x + B2

y + B2
z )). (3)

The case B = 0 is the identity operation; R(0) = 1. The rotor form has this advantage
over Euler angles, that there is no coordinate singularity at the origin.
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Table 1. Coefficients cij in equation (7).

Rotation ci1 ci2 ci3

Re1R̃

(
1 − (B2

y + B2
z )

2

) (
XBz +

BxBy

2

) (
−XBy +

BxBz

2

)

Re2R̃

(
−XBz +

BxBy

2

) (
1 − B2

x + B2
z

2

) (
XBx +

ByBz

2

)

Re3R̃

(
XBy +

BxBz

2

) (
−XBx +

ByBz

2

) (
1 − B2

x + B2
y

2

)

3.1.1. Comparison with the axial-vector form. Since vector algebra is far more widely known
than GA, it is useful to be able to convert between the rotor form and a conventional axis and
angle. As we have seen, the size of the rotation angle φ is given by

φ = 2 arcsin

( |B|
2

)
. (4)

The axis of the rotation is given by a unit vector b̂ = b1e1 + b2e2 + b3e3, whose components
bi are found as follows:∑

i

b2
i = 1; (5)

b1:b2:b3 = Bx :By :Bz. (6)

So for example a bivector whose only non-zero component is Bx describes a rotation in
the e2e3-plane, or equivalently a rotation about the x-axis; a rotation with Bx = By = Bz is a
rotation about the [111] direction, and so on. Not only are the Bn convenient parameters for
calculation, but also it is easy to visualize their meaning.

3.2. Rotation of basis vectors

We can write the effect of an arbitrary rotation in terms of its effect on the basis vectors as a
function of the terms Bn given above, treating the Bn as the parameters of the rotation. In each
case we have an equation of the form

ReiR̃ = ci1e1 + ci2e2 + ci3e3, (7)

where the coefficients cij are shown in table 1.

4. Technique

Since we know the effect of a rotation on the basis vectors, we know its effect on any arbitrary
vector. We can now make use of this in order to identify the rotational motions of structural
polyhedra which, according to the RUM, we expect to find in framework mineral structures.

4.1. Fitting a rotation

To perform the calculation we make use of the bond vectors within each polyhedron. Let us
suppose that we have two slightly different forms of the same structure. Let us consider the
structure bond by bond. For each bond we have a vector from the central atom p to an atom
q at a vertex of the polyhedron; for one form of the structure let us call this vector PQ, for
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M = m + m + m

m1

1
2 2 2

2

m3

m2

3

Figure 2. The best-fit rotation is that which minimizes the mismatch valueM .

Table 2. The coefficients dij in equation (8).

Eqi di1 di2 di3

Eq1

(
1 − B2

y + B2
z

2

) (
−XBz +

BxBy

2

) (
XBy +

BxBz

2

)
−PQ′

1

Eq2

(
XBz +

BxBy

2

) (
1 − B2

x + B2
z

2

) (
−XBx +

ByBz

2

)
−PQ′

2

Eq3

(
−XBy +

BxBz

2

) (
XBx +

ByBz

2

) (
1 − B2

x + B2
y

2

)
−PQ′

3

the other form PQ′. For example, PQ and PQ′ might be snapshots of the dynamic disorder in
the structure at two different times. Our assumption, from the rigid-unit picture, is that there
exists a rotation which takes PQ very close to PQ′. This is illustrated in figure 2. We can
also compare the polyhedra in a real structure PQ′ to those in an idealized structure PQ with
perfectly regular tetrahedra, so as to quantify the distortion of the polyhedra.

4.2. Mismatch equation

We can write down a vector PQ′′(PQ, B), representing the vector PQ after the rotation defined
by B; this allows us to write a mismatch vector E, given by Eq = PQ′′ − PQ′. Minimizing
this mismatch with respect to the parameters Bn will give the rotation which best fits PQ onto
PQ′.

Writing PQ in components as PQ = PQ1e1 + PQ2e2 + PQ3e3, we can apply a rotation
to PQ using equation (7). The vector Eq can now be written in components as Eq =
Eq1e1 + Eq2e2 + Eq3e3, which can be written in terms of (PQ,PQ′, B):

Eqi = di1PQ1 + di2PQ2 + di3PQ3 − PQ′
i . (8)

The coefficients dij are shown in table 2.
In order to find a rotation which best fits PQ onto PQ′, we also need the derivatives

of the Eqi with respect to the Bn. Let us note that X =
√

1 − 1
4 (B

2
x + B2

y + B2
z ), so

∂X/∂Bn = −Bn/(4X). The derivatives can be given in the form
∂Eqi

∂Bn
= ain1PQ1 + ain2PQ2 + ain3PQ3. (9)

The coefficients ainj are shown in table 3.
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Table 3. The coefficients ainj in equation (9).

Eqi ∂/∂Bn ain1 ain2 ain3

Eq1 ∂/∂Bx 0

(
BxBz

4X
+
By

2

) (
−BxBy

4X
+
Bz

2

)

Eq1 ∂/∂By (−By)
(
ByBz

4X
+
Bx

2

) (
X − B2

y

4X

)

Eq1 ∂/∂Bz (−Bz)
(

−X +
B2
z

4X

) (
−ByBz

4X
+
Bx

2

)

Eq2 ∂/∂Bx

(
−BxBz

4X
+
By

2

)
(−Bx)

(
−X +

B2
x

4X

)

Eq2 ∂/∂By

(
−ByBz

4X
+
Bx

2

)
0

(
BxBy

4X
+
Bz

2

)

Eq2 ∂/∂Bz

(
X − B2

z

4X

)
(−Bz)

(
BxBz

4X
+
By

2

)

Eq3 ∂/∂Bx

(
BxBy

4X
+
Bz

2

) (
X − B2

x

4X

)
(−Bx)

Eq3 ∂/∂By

(
−X +

B2
y

4X

) (
−BxBy

4X
+
Bz

2

)
(−By)

Eq3 ∂/∂Bz

(
ByBz

4X
+
Bx

2

) (
−BxBz

4X
+
By

2

)
0

4.3. Minimization by steepest descent

We define a mismatch score M by summing the squares of the mismatch vectors Eq over all
the bonds in a polyhedron:

M =
∑
q

3∑
i=1

E2
qi . (10)

Usually q = 4 as we are often dealing with SiO4 tetrahedra.
We can take M as a function over a vector space whose basis is Bn; since we have the

partial derivatives 9, we know not onlyM but also ∇M:

(∇M)n =
∑
q

3∑
i=1

2Eqi
∂Eqi

∂Bn
. (11)

To find the minimum ofM we use the method of steepest descents, starting fromB = 0 and
taking steps in the direction of −∇M until |∇M| is sufficiently close to zero to be considered
a minimum. B is the best-fit rotation for the polyhedron and the value ofM at Bmin represents
the residual distortion of the polyhedron.

If the bond lengths lPQ, lPQ′ differ, then a part of the residual distortion can be attributed
to a bond-stretching term. The remainder of the distortion is due to flexing of the tetrahedral
angles. So long as the flexions are small then the bond-stretching and bond-angle-bending
displacements of the atomQ are approximately orthogonal to each other, so we may divide the
residual distortion E2

q,after into bending and stretching terms, thus: E2
q,after = m2

bend + m2
stretch.

This is illustrated in figure 3.
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m

m

mbend

mstretch

Figure 3. Where both rotation and distortion are present, there will be some residual mismatch,
which can be divided into bending and stretching terms.

4.4. Programming routines

The program to carry out this minimization was written in Fortran90. Modules containing
functions for equations (8) and (9) and a subroutine for the steepest-descent algorithm are
available from www.esc.cam.ac.uk/minsci/downloads.

5. Case studies

5.1. Phase transitions and dynamic disorder

We noted in the introduction that many high-temperature phases appear to have orientational
disorder of the polyhedra. One example is β-cristobalite, which has a face-centred cubic
structure. Crystallographic analysis has the average positions of neighbouring Si–O–Si atoms
in straight linkages. However, in most silicates this linkage has an angle of around 145◦.
Moreover, the thermal displacement parameters suggest considerable transverse motions of
the O atoms, and this has led to the understanding that there is considerable disorder of this
phase with large-amplitude motions of the atoms as they seek to avoid forming linear Si–
O–Si linkages. Initially it was thought that the structure of this phase could be explained
through the formation of small domains of the low-temperature phase or of other ordered
phases, but recent work has shown that there is considerable dynamic disorder arising from
fluctuations of atomic motions with a wide range of wavevectors [25, 26]. This is consistent
with the RUM interpretation in which RUMs across a wide range of wavevectors cause large-
amplitude rotations of the tetrahedra. Support for the RUM interpretation has come from
molecular dynamics simulations [27], RMC analysis of neutron total-scattering data [28], and
inelastic neutron scattering measurements.

The important component of the RUM theory of disordered crystalline framework
structures that has yet to be properly quantified is the fraction of the atomic motions that
are associated with the RUMs. Although the RUM model highlights the rigid-body motions
of the polyhedra, the vast majority of phonons give some deformations of the polyhedra, and
we expect to see deformation modes riding on the RUM excitations.

To quantify the extent of the RUM contribution to the atomic motions in disordered
phases, we have used large configurations of tetrahedra in silica polymorphs constructed by
RMC modelling from neutron total-scattering data. The experimental data and RMC analysis
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Figure 4. The dynamic disorder in quartz is largely accounted for by rigid-unit motions of the
tetrahedra. The difference between the total disorder and the tetrahedral distortion is due to rigid-
unit motion. The horizontal axis gives temperature in kelvins; the vertical axis gives mismatch
scoreM in Å2 summed over 24 000 bond vectors in 6000 polyhedra.

has been described in detail in a number of papers. The essential point here is that the RMC
method has been used to generate atomic configurations that have a good consistency with
experimental data. It should be noted that the experimental data were collected to a high value
of the scattering vector, so there is a good resolution on the atomic positions in real space.
The RMC method takes account of the pair distribution function, the overall neutron scattering
intensity, and the intensities of the Bragg peaks. As a result, the RMC configurations will
capture both the long- and short-range order seen in experiments. The RMC configurations
also contained constraints on the bonding in order to avoid the formation of spurious defect
states that may arise through the statistical nature of the RMC algorithms.

Two configurations were generated from the scattering data at each temperature value.
Both configurations started with the same initial configuration, but the stochastic nature of
the RMC algorithms means that the two configurations differed slightly from each other. We
treat the two configurations as two snapshots of the dynamic disorder in quartz, and apply our
rotor-fitting algorithms, taking the bond vectors PQ from one configuration and PQ′ from the
other. The initial mismatch score Mbefore before fitting a rotation gives a measure of the total
disorder, while the residual mismatchMafter after fitting a rotation represents actual tetrahedral
distortion; the difference between the two is attributable to rigid-unit motion of the polyhedra.
These data are presented in the figure 4.

We note first that the actual tetrahedral distortion is much less than the total disorder. The
large difference between the two indicates the contribution of RUMs to the dynamic disorder.
Figure 5 gives the RUM contribution as a percentage of the total disorder; this contribution
rises from 60 to 70% at low temperature to almost 90% just below the phase transition, and
increases above 90% in the β-phase. The amplitude of the RUMs increases with temperature
much faster than the amplitude of the non-RUM disorder.

The α–β phase transition is clearly visible in the dynamic disorder, which drops
dramatically as the temperature falls below the transition temperature. This is almost entirely
due to the effect of the phase transition on the RUMs, as the tetrahedral distortion is almost
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Figure 5. The proportion of the dynamic disorder accounted for by rigid-unit motions of
the polyhedra increases with temperature, exceeding 90% in the high-symmetry β-phase. The
horizontal axis gives temperature in kelvins. Proportions are given as percentages of the total
dynamic disorder at that temperature.

insensitive to the phase transition. There exist phonon modes which are RUMs in the high-
symmetry β-phase but become ordinary phonon modes involving tetrahedral distortion in the
low-symmetry α-phase. This change is accompanied by a dramatic decrease in amplitude as
the frequency of the mode increases from the very low RUM frequency to the frequency of an
ordinary phonon mode. We attribute the changes in dynamic disorder with temperature to the
effects of the symmetry change on the RUM phonons. The behaviour of the mode frequencies
as a function of the order parameter will be discussed elsewhere.

The tetrahedral distortion can be further divided into the terms due to variation in bond
lengths and due to bending of the O–Si–O bond angle. It is clear that the distortion is primarily
due to bond bending, with a much smaller bond-stretching component. The nature of the
distortions does not appear to change over the temperature range of the study.

5.2. Defect accommodation

Many framework structures have more than one type of cation in the polyhedral sites. For
example, many silicate minerals and zeolites have a mixture of AlO4 and SiO4 tetrahedra.
The Si4+ and Al3+ cations differ in size, and this gives rise to straining of the network when
the arrangement of cations does not match. The popular expression of this effect is the so-
called ‘Al-avoidance rule’, which states the observation that Al cations tend to avoid forming
nearest-neighbour pairs in framework silicates. The essential point of this rule is that there is a
strain-induced tendency to maximize the number of Si–O–Al linkages in order to give the best
fitting of the different-sized cations and thereby to reduce the overall strain on the network. It
is of interest to understand how the strain propagates through the network. In particular, the
strain may be accommodated by RUM-like rotations of the tetrahedra to minimize the size
mismatch. We have applied our GA approach to quantify the relaxation of a silica network
around a tetrahedral Al3+ substitutional defect. This case study is intended as a proof of
principle; in a forthcoming paper we shall address the phenomenon of Al avoidance in terms
of the response of the structure to pairs of defects.

The basic configurations have been constructed using the Mott–Littleton method for
calculating defect energies, as coded into the general modelling program GULP. This approach
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Figure 6. The apparent distortion of the structure due to the presence of the defect (upper line) is
largely accommodated by rotational motions of the tetrahedra, leaving a much smaller quantity of
actual tetrahedral distortion (lower line). The horizontal axis gives distance from the defect centre
in Å; the vertical axis gives the mismatch score per polyhedron in Å2.

uses empirical interatomic potentials, and relaxes the structure around a defect site up to a pre-
defined cut-off. The rest of the crystal is approximated as a polarizable medium.

In this case study we considered the effect of an Al3+ substitutional defect on the structure
of SiO2 cordierite. The structure was relaxed out to a radius of 15 Å. We applied our rotor-
fitting algorithms to match the polyhedra in the defective structure to the polyhedra in the
initial, undistorted structure. The initial mismatch score Mbefore describes the change in the
structure due to the defect while the final mismatch score Mafter indicates actual tetrahedral
distortion. The difference between the two is a measure of the degree to which the distortion
is accommodated by RUM-like rotations of the polyhedra.

Figure 6 shows the initial and final mismatch scores per polyhedron as a function of
distance from the defect centre. Three phenomena are immediately clear. Firstly, the tetrahedra
that are nearest neighbours to the defect site are highly distorted by the presence of the defect.
Secondly, the next-nearest neighbours to the defect site undergo considerable motion due to
the presence of the defect (note the evident peak in the line ‘total motion’ at just <6 Å), but
this motion is largely accounted for by rigid-unit motion of the tetrahedra. Thirdly, the elastic
strain in the structure due to the presence of the defect, as represented by the line ‘tetrahedral
distortion’, drops off very rapidly with distance from the defect centre. It appears that the
accommodation of the defect by rigid-unit motions of the nearby tetrahedra has the effect of
screening the structure at larger distances from the effects of the defect.

Quantitatively, the total-mismatch score over the nearest 268 polyhedra to the defect
centre is reduced from 0.55 to 0.21 Å2 by rotations of the polyhedra—an accommodation of
just over 60%. Of this residual mismatch, a total of 0.10 Å2 resides on the highly distorted
nearest-neighbour tetrahedra—45% of the total residual mismatch. A total of 0.16 Å2, or 72%,
resides on polyhedra within 6 Å of the defect centre, while a total of 0.207 Å2, or 97%, resides
within 12 Å. Figure 7 gives the displacements of the Si atoms from their initial positions as
a result of the defect; these displacements also drop off rapidly with distance from the defect
centre.
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Figure 7. The displacement of the silicon atoms drops off rapidly with distance from the defect
centre. Horizontal axis: distance from defect centre in Å; vertical axis: displacement in Å.
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Figure 8. The average motion of the oxygen atoms relative to the silicon atoms also drops off
rapidly with distance from the defect centre. It is largely accounted for by rotational motions of the
tetrahedra and is of the same order of magnitude as the motions of the silicon atoms. Horizontal
axis: distance from defect centre in AA; vertical axis: RMS displacement in Å.

Figure 8 gives the data from figure 6 interpreted as the RMS displacement of oxygen
atoms relative to the Si atoms to which they are bonded. The calculation is not difficult
as the mismatch score for each polyhedron is simply the sum of the squares of the atomic
displacements relative to the Si atom at the centre. These displacements are of a magnitude
comparable with the displacements of the Si atoms, and, as we have seen, drop off rapidly
with distance from the defect centre and are largely accounted for by rotational motions of the
polyhedra.
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6. Discussion

In this paper we have introduced a new method for analysing rotations of tetrahedra within
crystal structures using the tools of GA, and then used this method to study the rigid-body
rotations of tetrahedra in two distinct applications. The first was concerned with the changes
in the atomic fluctuations (phonons) in quartz on heating through the phase transition. The
GA analysis has shown that the major contribution to the dynamical disorder associated with
the phase transition is due to low-energy rigid-unit modes. The analysis has, for the first time,
quantified the role of the RUM fluctuations relative to other fluctuations.

The second application has been concerned with incorporation of defects in frameworks
of connected tetrahedral sites, and the strain fields that propagate as a result of the defect. The
primary finding has been that the significant contribution to the nearest-neighbour interaction
arises from deformations of the tetrahedra, but there are large-amplitude atomic displacements
for other neighbours that accommodate the strain and which are primarily associated with
rigid-tetrahedral rotations.

These examples have been described as illustrative case studies, and more detailed and
more general analyses will be given elsewhere. The case studies have shown how the tools
based on GA can provide quantitative information

GA is not a commonly taught mathematical system. Most scientists learn vector
and tensor algebra, largely for historical reasons, vector algebra being so bound up with
the development of electromagnetism. However, GA has proved useful in scientific and
engineering applications [21–23], particularly in handling rotations and reflections. Since
GA uses bivectors to describe rotations, it avoids the confusing distinction between true
vectors and ‘axial vectors’ with their differing behaviour under reflection. Operations are
carried out using the geometric product rather than by matrix operators, which leads to
greater mathematical clarity and simplicity. The bivector form for rotations naturally gives a
convenient parametrization in terms of the components of the bivector, avoiding any coordinate
singularity at the origin.

The algebraic forms describing the rotation (7)–(9) proved convenient for computational
use, giving simple routines and a robust and swiftly converging minimization.

Appendix. Mathematical background

A.1. Axioms of GA

GA makes use of a basis set of vectors (not necessarily orthogonal) xi , whose number is equal
to the dimensionality of the vector space, and a geometric product denoted by juxtaposition:
ab. This product is distributive: (a(b+c) = ab+ac) and associative: (a(bc) = (ab)c = abc)
but not necessarily commutative. The square of any vector is a scalar, which is not required to
be positive; however, we will only deal here with Euclidean space in which our basis vectors
have positive square.

For two vectors, the product may be decomposed into a symmetric part a · b = 1
2 (ab + ba)

and an antisymmetric part: a ∧ b = 1
2 (ab − ba). The symmetric part is identical to the usual

dot product in vector algebra, being a scalar equal to |a||b| cos(θ). However, the antisymmetric
part is not a vector cross product, but rather a new object known as a bivector, representing
the plane common to the two vectors, as in figure A.1. When we come to deal with rotations
in three dimensions, we will see that bivectors act similarly to quaternions. It is conventional
not to distinguish vectors in GA by any special type-face.
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Figure A.1. Formation of a bivector.

We may describe objects in GA according to the number of orthogonal vectors that multiply
together to generate them; thus a scalar is a grade 0 object, vectors have grade 1, bivectors have
grade 2, and so on. The highest-grade object in the algebra has a grade equal to the dimension
of the vector space. All of the objects of the algebra are formed as products of the basis vectors
xi . A general multivector can include objects of all grades. In dealing with rotations we will
mostly be concerned with vectors (grade 1) and rotors, which contain objects of even grade.
A few examples will suffice to make these ideas clear.

A.2. Two-dimensional GA

GA in two dimensions is easy to grasp as there is a direct analogy to the familiar mathematics
of complex numbers. A two-dimensional vector space has a four-dimensional GA, comprising
the following objects: {1}, the scalar; {e1, e2}, the basis vectors; and {I}, the bivector. We
take e1 and e2 to be the usual right-handed basis set.

The basis vectors, being orthogonal, have the properties

e1 · e1 = e2
1 = 1; e2 · e2 = e2

2 = 1; e1 · e2 = 0. (A.1)

The product e1e2 is antisymmetric and gives the bivector e1 ∧ e2 = e1e2 = I . The reverse
of an object in GA is found by reversing the order of its component vectors, so we may write

Ĩ = e2e1 = −I. (A.2)

We can use the associativity of the geometric product to show that I squares to −1, as follows:

I 2 = II = e1e2e1e2 = e1(e2e1)e2 = e1(−e1e2)e2 = −e2
1e

2
2 = −1. (A.3)

I is not, however, an imaginary number, but a geometric object of the algebra generated from
our basis vectors. Bivectors can be exponentiated just as matrices can, and the property that
I 2 = −1 means that the usual complex trigonometric identities apply:

eIφ = cos(φ) + I sin(φ). (A.4)

We could represent complex numbers either by a vector in the complex plane, with e1

representing the real axis:

z = ue1 + ve2 (A.5)

or as a sum of real and bivector parts;

z = u + ve1e2 = u + vI. (A.6)

One form can be converted to the other by left multiplication by e1. The effect of multiplying
our vectors by I depends on the order of multiplication. Multiplication on the left by I gives
a clockwise rotation by ninety degrees:

Ie1 = e1e2e1 = −e1e1e2 = −e2; Ie2 = e1e2e2 = e1; (A.7)

while right multiplication by I gives an anticlockwise rotation:
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Figure A.2. Rotation of a vector using the bivector I .

e1I = e1e1e2 = e2; e2I = e2e1e2 = −e1e2e2 = −e1. (A.8)

We can make use of the effect on vectors of multiplication by the bivector I to represent
rotations in the complex plane. An arbitrary vector x(= x1e1 + x2e2) can be rotated
anticlockwise in the plane by an angle φ by either left multiplication:

x ′ = (cos(−φ) + I sin(−φ))x = e−Iφx, (A.9)

or right multiplication:

x ′ = x(cos(φ) + I sin(φ)) = xeIφ. (A.10)

We can also perform the rotation using operators on both sides:

x ′ = e−Iφ/2xeIφ/2. (A.11)

In this form the operator R = exp(−Iφ/2) is called a rotor. The operator on the right is the
reverse of R, as 1̃ = 1 and Ĩ = −I , so we can write the rotation as x ′ = RxR̃. Rotors are the
standard means of expressing a rotation in GA. We note that RR̃ = 1, from the definition of
the rotor.

A.3. Three-dimensional GA

GA in three dimensions is slightly more complicated than in two. A basis set of three
orthonormal vectors generates an algebra of eight objects of various grades: {1}, the scalar;
{e1, e2, e3}, the basis vectors; {e1e2, e2e3, e3e1}, three bivectors, often written {B3, B1, B2};
and {e1e2e3}, the pseudoscalar (highest-grade object). Both the bivectors and the pseudoscalar
square to −1. It is important to note that a bivector commutes with a vector orthogonal
to it (example: e1e2 commutes with e3 as e1e2e3 = −e1e3e2 = e3e1e2). Multiplication by
the pseudoscalar e1e2e3 provides the operation of the Hodge dual, relating a bivector to its
orthogonal vector.

A general bivector can contain components of all three basis bivectors {B1, B2, B3},
representing a plane. It can be visualized as the outer product of two vectors in the plane—for
example, the bivector e1e2 +e2e3 can be written as (e1−e3)∧e2, that is, the plane containing the
vectors (e1 − e3) and e2. Or, in this three-dimensional case, we can apply the Hodge dual and
find the vector orthogonal to the bivector; so a general bivector B = Bxe2e3 +Bye3e1 +Bze1e2

would be orthogonal to the vector b = bxe1 + bye2 + bze3.
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Figure A.3. Addition of bivectors.

Figure A.4. The rotor operator.

A.4. Rotor operator

In three dimensions we are used to describing a rotation in terms of the axis about which it
occurs, for example by means of an axial vector. In GA this idea is considered misleading.
We saw in the two-dimensional case how rotations could be described in a plane. In GA
we use exactly the same description, whatever the dimension of the space; the rotation is
described by its magnitude and by the plane in which it occurs. The plane can be described by
a bivector (grade-2 object) made up of some combination of the basis bivectors Bi ; the vector
normal to this plane, which can be found via the Hodge dual, would be the rotation axis in the
conventional picture. So for example a rotation in the plane B̂ = B̂xe2e3 + B̂ye3e1 + B̂ze1e2

would be described as rotation about the axis b̂ = b̂xe1 + b̂ye2 + b̂ze3 in vector algebra.
The two-sided rotor operator which we met in the two-dimensional case can also

be used in three dimensions. The plane of the rotation is described by a unit bivector
B̂ (B2 = −1;BB̃ = 1). Any vector x can be decomposed into parts perpendicular to the
plane of B̂, xout, and within the plane, xin. The part lying within the plane is rotated, just as in
the two-dimensional case. The part perpendicular to the plane, however, commutes with both
the scalar and the bivector B̂, and therefore commutes with R. As we noted before, RR̃ = 1,
and so xout is unaffected by the rotor operator:

RxoutR̃ = xoutRR̃ = xout. (A.12)

Since the rotor operator is a function of the half-angle φ/2 rather than of φ, an arbitrary rotation
can be described in terms of its plane and an angle φ/2 between zero and π/2 radians. This is
convenient when we write the expansion R = cos(φ/2)− B̂ sin(φ/2), as the sine and cosine
terms are always positive. The rotor is illustrated in figure A.4.
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The conventional representation of rotors in exponential or trigonometric form is well
suited to formal work. However, in this work we have, for the sake of computational
convenience, used the following algebraic form:

R = X − 1
2 (Bxe2e3 + Bye3e1 + Bze1e2) = X − B/2. (A.13)

In this form theBnej ek terms form a bivectorB, defining the plane of the rotation. Comparison
with the trigonometric form gives the magnitude of B as

|B| =
√
B2
x + B2

y + B2
z = 2 sin

(
φ

2

)
, (A.14)

so for small angles, |B| � φ. The term X is equal to cos(φ/2) and is given by

X =
√(

1 − 1
4 (B

2
x + B2

y + B2
z )

)
. (A.15)

The case B = 0 is the identity operation; R(0) = 1.
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[23] Lasenby J, Lasenby A N and Doran C J L 2000 A unified mathematical language for physics and engineering
in the 21st century Phil. Trans. R. Soc. A 358 21–39

[24] The Geometric Algebra Research Group home-page. http://www.mrao.cam.ac.uk/ clifford/
[25] Dove M T, Keen D A, Hannon A C and Swainson I P 1997 Direct measurement of the Si–O bond length and

orientational disorder in β-cristobalite Phys. Chem. Minerals 24 311–7
[26] Gambhir M, Dove M T and Heine V 1999 Rigid unit modes and dynamic disorder: SiO2 cristobalite and quartz

Phys. Chem. Minerals 26 484–95
[27] Swainson I P and Dove M T 1995 Molecular dynamics simulation of α- and β-cristobalite J. Phys.: Condens.

Matter 7 1771—88
[28] Tucker M G, Squires M D, Dove M T and Keen D A 2001 Dynamic structural disorder in cristobalite: neutron

total scattering measurement and reverse Monte Carlo modelling J. Phys.: Condens. Matter 13 403–23


